skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baron, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract We present a JWST MIRI medium-resolution spectrometer spectrum (5–27μm) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days pastB-band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Coiii] 11.888μm feature directly traces the decay of56Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities ofρc= 0.9−1.1 × 109g cm−3, a WD mass ofMWD= 1.33–1.35M, a WD magnetic field of ≈106G, and an off-center deflagration-to-detonation transition at ≈0.5Mseen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition fromγ-rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9μm now has a significant contribution from [Niiv], [Feii], and [Feiii] and less from [Ariii], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract We present the second and final release of optical spectroscopy of Type Ia supernovae (SNe Ia) obtained during the first and second phases of the Carnegie Supernova Project (CSP-I and CSP-II). The newly released data consist of 148 spectra of 30 SNe Ia observed in the course of CSP-I and 234 spectra of 127 SNe Ia obtained during CSP-II. We also present 216 optical spectra of 46 historical SNe Ia, including 53 spectra of 30 SNe Ia observed by the Calán/Tololo Supernova Survey. We combine these observations with previously published CSP data and publicly available spectra to compile a large sample of measurements of spectroscopic parameters at maximum light, consisting of pseudo-equivalent widths and expansion velocities of selected features for 232 CSP and historical SNe Ia (including more than 1000 spectra). Finally, we review some of the strongest correlations between spectroscopic and photometric properties of SNe Ia. Specifically, we define two samples: one consisting of SNe Ia discovered by targeted searches (most of them CSP-I objects) and the other composed of SNe Ia discovered by untargeted searches, which includes most of the CSP-II objects. The analyzed correlations are similar for both samples. We find a larger incidence of SNe Ia belonging to the cool and broad-line Branch subtypes among the events discovered by targeted searches, shallow-silicon SNe Ia are present with similar frequencies in both samples, while core normal SNe Ia are more frequent in untargeted searches. 
    more » « less
  4. null (Ed.)
  5. Abstract We present and analyze a near-infrared (NIR) spectrum of the underluminous Type Ia supernova SN 2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory, 191 days after B -band maximum. The spectrum is dominated by a number of broad emission features, including the [Fe ii ] at 1.644 μ m, which is highly asymmetric with a tilted top and a peak redshifted by ≈2000 km s −1 . In comparison with 2D non-LTE synthetic spectra computed from 3D simulations of off-center delayed-detonation Chandrasekhar-mass ( M ch ) white dwarf (WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitor’s envelope. We find that the size and tilt of the [Fe ii ] 1.644 μ m profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ∼4 × 10 9 g cm −3 . We also tentatively identify a stable Ni feature around 1.9 μ m characterized by a “pot-belly” profile that is slightly offset with respect to the kinematic center. In the case of SN 2020qxp/ASASSN-20jq, we estimate that the location of the DDT is ∼0.3 M WD off center, which gives rise to an asymmetric distribution of the underlying ejecta. We also demonstrate that low-luminosity and high-density WD SN Ia progenitors exhibit a very strong overlap of Ca and 56 Ni in physical space. This results in the formation of a prevalent [Ca ii ] 0.73 μ m emission feature that is sensitive to asymmetry effects. Our findings are discussed within the context of alternative scenarios, including off-center C/O detonations in He-triggered sub- M Ch WDs and the direct collision of two WDs. Snapshot programs with Gemini/Keck/Very Large Telescope (VLT)/ELT-class instruments and our spectropolarimetry program are complementary to mid-IR spectra by the James Webb Space Telescope (JWST). 
    more » « less
  6. Abstract We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD ( M WD ≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible. 
    more » « less
  7. ABSTRACT We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity. 
    more » « less
  8. Abstract We present early-time photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2021aefx. The early-timeu-band light curve shows an excess flux when compared to normal SNe Ia. We suggest that the early excess blue flux may be due to a rapid change in spectral velocity in the first few days post explosion, produced by the emission of the CaiiH&K feature passing from theuto theBbands on the timescale of a few days. This effect could be dominant for all SNe Ia that have broad absorption features and early-time velocities over 25,000 km s−1. It is likely to be one of the main causes of early excessu-band flux in SNe Ia that have early-time high velocities. This effect may also be dominant in the UV filters, as well as in places where the SN spectral energy distribution is quickly rising to longer wavelengths. The rapid change in velocity can only produce a monotonic change (in flux-space) in theuband. For objects that explode at lower velocities, and have a more structured shape in the early excess emission, there must also be an additional parameter producing the early-time diversity. More early-time observations, in particular early spectra, are required to determine how prominent this effect is within SNe Ia. 
    more » « less
  9. Abstract We present 75 near-infrared (NIR; 0.8−2.5 μ m) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR “He-rich” and “He-poor” SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 μ m region, near the He i λ 2.0581 μ m line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i λ 2.0581 μ m absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group. 
    more » « less
  10. null (Ed.)